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ABSTRACT

This paper examines the effects 4 )
paj fects of uncertainty in structural and material model
: | dels

on seismic response and reliability of structural syst
- Lo - L C : €IS,
hysteretic constitutive laws commonly used in earth

restoring forces and extensive Monte Carlo simulation for obtaining probabilisti
| abilistic

characteristics. Several numerical examples based on single- and multi-d
freedom systems are presented. ulti-degree-of-

The analysis involves

INTRODUCTION

It is widely recognized that the seismic performance of structural systems is overwhelmingly
dominated by the uncertainty in seismic load processes. Accordingly, reliability analysis is carried
out by assuming deterministic structural and material characteristics thus ignoring their inherent
stochasticity. The uncertainty in system modeling is usually present due to the variabilities in
(i) mathematical idealization of structural system, (iz) mathematical representation of hysteretic
restoring forces, and (7:z) the parameters of restoring force characteristics given a hysteretic model

3,4].

This paper conducts a systematic investigation to determine the effects of uncertainty mn

system modeling on seismic response and reliability of structural systems. The method of analysis
is based on (7) common hysteretic constitutive laws for material models and (i7) extensive Monte

Carlo simulation for performance evaluation. Several numerical examples on single- and multi-

degree-of-freedom systems are presented.

STRUCTURAL SYSTEMS

res, modeling of structural systems
representation of the

tion depends on how

| In predicting the response and damage of actual structu .
is an essential task. A model of a structure is defined as a mathematical

behavior of the structure in its environment. The accuracy of response predic

well the models approximate the actual behavior of the structure.

I
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Fig. 3: Base Shear Coefficient Versus Top Displacement

Table 1: Exceedance Probability of Ductility Ratio

g e Pripx > #o)
—_ —+ k #0:3 Ho — * ;1025 pg.—_*ﬁ
Deterministic | 1 0.383000 5151000 | 5.666x10°° 5033x10-°
System 2 0201333 | 6.266x107° 1 566x10-2 | 5.333x107°
3 0121000 | 2.400x107° 6.000x107° 1.666x107°
4 7.633x10°2 1.166x10~7 2.000%10~° 3.333x10~*
5 4.500%10°° 5.666%107° 0.000 0.000
6 4.400%10~° 3.000%x107° 0.000 0.000
> | 3.133x10°2 | 9.999%107° 0.000 | 0.000
8 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000
10 0.000 | 0.000 0.000 | 0.000 =
s 1 1 | 1452666 0.269000 0154333 | 9-099x10°
System 2 0.312666 0.153000 7 733x10~* 4.133%x10~°
3 0.223000 9.200%10~" 4.066x107" | 2.200%107°
4 0.161000 c 700% 107 | 2.433x10~° 1.033x10~°
5 0.109333 3.466x107° | 1.066x107° 5.000%107°
6 0.114000 3 066%1072 7333x107° 1 666x107°
T 0.104666 9 133x10~° £ 000%107° 1.333%x107°
g §1.333%10°° 0.000 0.000 | 0:000
9 9.999x10 0.000 0.000 0.000
10 0.000 0.000 | 0.000 0.000
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